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Abstract —The problem of linear elasticity for an infinite region containing a finite number of non-
intersecting spherical and, more generally, ellipsoidal inhomogeneitics is attacked. The approach
taken does not misrepresent geometry of inhomogeneities, although the coatinuity conditions at
the intertaces are only approximately satistied. The principal idea of the approach is to extend the
method of Kachanoyv (1988, fnr. J. Fracture 28, RU-RU9 1987, Int. J. Solids Structures 23, 23-
43) for interacting cracks to the realm of the Eshelby equivalent inclusion method. The application
to a test problem for two spherical cavities suggests that the approach can be useful for predictions
of the overall response of composite materials and interfacial stress concentrutions.

L INTRODUCTION

In this paper we address the linear elasticity problem for an infinite region containing a
finite number of non-intersecting spherical inhomogeneitics. While a general closed-form
solution to this problem is not feasible it is important to develop both accurate and
efficient methods of approximate analysis. Itis apparent that straightforward applications of
numerical methods to this problem are extremely limited-—computations become pro-
hibitively expensive if the number of inhomogencitics exceeds two. Although a trivial
approximation (the dilute solution), which neglects interactions among inhomogeneities, is
attractive in terms of computations it may not be always sufliciently accurate. In the
literature, there has been proposed a number of ways to interpret interactions among an
infinitc number of inhomogeneitics (Christinsen, 1979 ; Hashin, 1983 ; Willis, 1983). It is,
however, fuir to state thut the majority of those approaches homogenize the complex
geometry of the problem and therefore can only be employed for estimates of the overall
response. The other deficiency of homogenization procedures is the difficulty in formulating
an adequitte test problem. This work presents a simple and relatively accurate method of
analysis which does not compromise the original geometry of the problem, although the
continuity conditions at the interfaces are only approximately satisfied.

The number of publications dedicated to the problem of linear clasticity for N spherical
inhomogeneities is rather small. The first analysis in this area is given by Sternberg and
Sadowsky (1952) for the axisymmetric problem for two voids. Chen and Acrivos (1978a)
provide a comprehensive treatment of the problem for two spherical inhomogeneities.
Their analysis contains accurate results for moderately separated inhomogeneities and
also exposcs computational difficultics as intcractions become stronger. One of the most
important conclusions following from their work is that stress concentrations, induced by
a neighbor, become important only when the inhomogencities are very close to each other.
For example, for two voids of radius a with the centers separated by d = 2.1a (Fig. 1),
stress concentrations under remote equal triaxial tension are only two times larger than
those obtained for a single void. The data of Chen and Acrivos, as our finite element
calculations suggest, are reliable up to « = 2.25a. The authors themselves give a conservative
estimate d = 3a.
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Fig. I. An infinite region containing two spherical voids.

A more general approach to the problem for N inhomogencitics is suggested by
Moschovidis and Mura (1975). They construct an approximate solution within the context
of the formalism of Eshelby (1957, 1959, 1961). The key assumption, made by Moschovidis
and Mura, is that the transformation strain within each domain is a polynomial in Cartesian
coordinates. In order to completely reduce the boundary-value problem to & system of
linear algebraic equations, the ficld around cach inhomogeneity is represented by a Taylor's
polynomial. Unfortunatcly, Moschovidis and Mura do not address the issue of convergence
of their procedure and the selection of numerical examples is not representative of the
problem.

A very simple estimate of weakly-interacting inhomogeneities is given by Willis and
Acton (1976). This estimate is developed in conjunction with the so-called order ¢? cal-
culations of the overall response pionecred by Batchelor and Green (1972) (c is the volume
fraction of inhomogeneities). The approximation of Willis and Acton is correct to order
(a/d)® and it predicts accurate results for well-separated inhomogeneities (d > 2.5a).

In our approach we decompose the original problem for N inhomogeneities into N
disconnected problems for a single inhomogeneity with the consequent solution of each
problem. This decomposition is motivated by an assumption made by Kachanov (1985,
1987) in a study of interacting cracks. We extend that assumption to spherical and, more
generally, ellipsoidal inhomogeneities. Typically, formulation of the N problems requires
inversion of a 6N x 6 N matrix. Each of these problems is stated for a single inhomogeneity
which perturbs a complicated remote field. Solution to this class of problems can be obtained
either by expanding this remote field into a Taylor’s series (Moschovidis and Mura, 1975)
or by using a finite element method.

In the next section we briefly review the Eshelby solution to the problems of a single
inclusion and an inhomogeneity. The purpose of this review is to provide the background
for the main problem both in terms of the concepts and notation. The third section discusses
some mathematical aspects of the Eshelby solution which are directly related to the problem
for N inhomogeneities. The analysis of the main problem is presented and tested in Sections
4 and 5, respectively. As a test we choose the problem for two equal voids subjected to
axisymmetric remote stress. The discussion focuses on the extension of the method to the
general case of ellipsoidal inhomogeneitics, and its applications to the mechanics of com-
posite materials.

We take the liberty of using both direct and index notation for tensors. Boldface lower-
case Greek letters designate tensors of rank two, capital Latin letters tensors of rank four.
Subscripts denote Cartesian components. Superscript 2 attributes the corresponding entry
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to the nth inhomogeneity. The finite element computations reported herein are performed
with the program ABAQUS installed on a CRAY XMP computer.

2. SUMMARY OF THE ESHELBY SOLUTION

Let us consider an infinite region of a homogeneous linear elastic isotropic material
with shear modulus u and Poisson’s ratio v. There is an inclusion inside this region, a sphere
w(|x| < a) which experiences uniform transformation strain B. The open exterior of the
inclusion, Q, is termed matrix. The strain field. induced by the inclusion, can be formally
written as

» Sg if xew
8(‘\)={Dp if xeQ. M

Tensor S is a constant (Eshelby, 1957) with components

75y
S =S = Sy = m
Sv—1
S = S:ZJJ =8, = Sun =S =Snn= m
4—5v
Sizz=Sun =S =S =Sun=Sun= m

The remaining components of S are equal to zero. Tensor D is expressed in terms of
potentials ¢ and § (Eshelby, 1959)

| . . .
D.,k/(-“) = 81?(1 _ﬂ) W’.ku, - 2""1(/‘15_., —(1=v) [(l),k/():l + ¢.k:bjl+ ‘25.1/5./: + ¢.n 5//‘ ]} (2)

with

4na’ 1 4na’ 4ra® |
= "‘3“!7‘1 +135 R 3

Formula (2}, although with different expressions for the potentials, can be used for tensor
S as well. Equation (5) of the next section is a general form of (1)-(3) valid for both S and
D.

The inclusion problem can be employed as the basis in constructing the solution for
an infinite body containing a spherical inhomogeneity. In this case the subdomain w is
occupied by a different linear elastic material. The stiffness tensors of the matrix and
inhomogeneity materials are C and C*, respectively. The matrix is subjected to a remote
uniform strain g“. The perturbation, g, of the remote field can be simulated using aninclusion
with the appropriately chosen equivalent transformation strain, . It is straightforward to
verify that the necessary and sufficient condition for the equivalence between the fields
induced by the inhomogeneity and the inclusion is

C*(e*+e)=C(e*+e—p) in w. (4)

This condition and the relation ¢ = SB in w form a closed system of algebraic equations
for the equivalent transformation strain. An explicit expression for f can be found in Mura
(1982, p. 156). After  has been determined the strain perturbation in the matrix is calculated
from eqns (1)-(3).
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Eshelby (1961) further derives a more general result. He demonstrates that if 1s a
polynomial of degree n in Cartesian coordinates, then the strain inside the inclusion is a
sum of monomials of degree n. n—2. n—4. etc. Although in this case the mathematical
expressions are somewhat lengthy. the structure of the approach is essentially the same as for
a uniform transformation strain. This generalization for the inclusion problem immediately
suggests that the inhomogeneity problem can also be extended to the general case of a
polynomial remote strain. A very clear presentation of these topics is given by Mura (1982).

3. PROPERTIES OF THE ESHELBY SOLUTION

In this section we will derive certain important properties of tensors S and D in order
to provide a consistent basis for the analysis of the problem for » inhomogencities.

Property L. If € is the strain inside the inclusion w. induced by a transformation strain f3,
then

&> =S{P>.
where the brackets denote the volume average in .

In order to prove this relation we use an integral representation of (1) (Mura, 1982,
p. 33):

l
l:l/(") = - By J‘ Cvk/mn/imn(x') [("nk,h(x- x’) +(;/A_I:(‘~ x')] dx’- (5)

where G (x, x) is the fundamental solution for an infinite domain. Direct integration of (5)
gives

1
{eyy = y f &,(x)dx

24

:

ipmn < /;lnlv > ‘

1

|
- ; J Jv ('kllm//ium(x’)[(’v:k‘l/(x‘")+G,A.h(‘v")]dx’dx
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In this calculation I, denotes the volume of w. We have used the symmetry of tensor
G X', x) inarguments X and x*, and a representation for §,,,,, which follows directly from

(5).

Property 2. Tensor D is analytic everywhere in Q.

It is apparent, from expressions (2). (3). that analyticity of |x] and |x] ' implies
analyticity of D . The proof for |x| as well as [or |x| ' becomes clementary if we wrile
Ix] = \/x *x, and obscrve that x - x is analytic everywhere, and the square root function is
analytic everywhere except for the origin. As Q docs not contain the origin, the proof is
complete.

The next property requires a definition. A Taylor’s polynomial of degree n of a smooth
function of x is complete if it omits none of the monomials of degrec .

!

Property 3. [f u(x) is an analytic solution of the homogencous Nacier equations of elusticity
in Q, then its complete Taylor'’s polynomial is also a homogencous solution of the Nacier
equations in Q.
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This property can be verified by a substitution. It is interesting to observe that this
conclusion can be drawn for any linear differential operator with constant coefficients for
which the characteristic equation is in the form of homogeneous polynomial. Here. we
restrict this property to the Eshelby solution. Let D be a complete Taylor's polynomial of
D. Then for a constant strain tensor 7, the strain field Dy in the matrix is compatible and
the corresponding stress satisfies the equilibrium equations.

Finally, we calculate the volume average of tensor D inside a spherical subdomain of
the matnix. This calculation can be done directly by integration of expressions (2). (3)
(Willis and Acton, 1976). We obtain the same result as a consequence of a more general
formula. which is an extension of the Gauss related theorem for harmonic functions. A
detailed derivation of this formula is given in the Appendix. For a spherical subdomain of
the matrix with radius r and the center at ¢(|c| > r+a) we derive

a'r 1
(D) = D(c)+mVVVV (l-x—l)‘sc. (6)

This integration takes advantage of the fact that potentials ¢(x) and y(x) are harmonic
and bi-harmonic functions, respectively.

4. THE PROBLEM FOR N INHOMOGENEITIES

Let us now demonstrate how the formalism of Eshelby can be extended, in an approxi-
male manner, to the problem for N non-intersecting spherical inhomogencities. The inhomo-
gencities are characterized by stiffnesses C” and occupy subdomains w” of an infinite clastic
body. Remote ficlds in the matrix, ¢“ and ¢ (¢° = Ce*), are uniform. In principle, this
problem can be written in terms of 6N coupled singular integral equations which are derived
as a combination of the equivalency condition (4) and representation (5). For N> 1 a
closed-form solution to this system of equations does not exist.

A natural approach to the problem for N inhomogencitics is to approximate the
cquivalent transformation strains by polynomials in Cartesian components (Moschovidis
and Mura, 1975). It turns out, however, that this approach may require polynomials of
high degree in order to achieve reasonable accuracy (sce next section). An attractive
treatment of the problem can be based on ideas proposed by Kachanov (1985, 1987) for
interacting cracks. Here, we reformulate the principal assumptions of Kachanov in the
context of the Eshelby formalism :

o The original problem for N inhomogeneitics can be represented by N problems for a
single inhomogencity subject to a remote strain (stress) ficld induced by the remaining
inhomogeneities and the uniform remote strain (stress).

e The contributions of the remaining inhomogeneitics to the remote field of a reference
inhomogeneity are based only on their average equivalent transformation strains.

The idea of representing the problem for N inhomogeneities as N problems for a single
inhomogencity has been employed in analyses of cracks by several authors (see Kachanov,
1987. for references). We, nevertheless, want to emphasize that its adoption is an assumption
which permits us to substitute a complete ficld by N local ficlds. This assumption is not
ambiguous if we restrict our calculations of the stress field in the matrix to the interfaces
only. Furthermore, in view of the second assumption, the most accurate values of interfacial
stress concentrations for a given inhomogencity are obtained from the corresponding local
field.

The second assumption implemented in the equivalency condition for the nth inhomo-
geneity gives
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Ce"+ Y D"(B™>+e) =Cle"+ Y D"(B"y+e"~B" in o" (7)

maxn men

The second term within each set of parentheses corresponds to the remote strain field
induced by the remaining inhomogeneities. Let us take the volume average of (7) in ”:

C'e"+ T (D™ (B +SCB™) = Cla™ + T (DSBS +S(PTy— (™) in o (8)

meEn man

The average strain inside ", induced by its own equivalent transformation strain. follows
from Property | of the previous section. Tensor (D™ corresponds to tensor D of the mth
inclusion averaged in " Evidently, for two itnhomogeneities with equal radii
(D™y = (D™, Equation (8). written for every domain, forms a system of 6V linear
algebraic equations for the average equivalent transformation strains {f">. The matrix of
this system is full and. in general, not symmetric. It is. nevertheless, characterized by a
dominant main diagonal. After the average equivalent transtormation strains have been
determined. we can formulate the problems for individual inhomogeneities.

The potential energy release, associated with the presence of inhomogeneities, can be
calculated directly in terms of ("> (Mura, 1982, p. 177):

All = —lg°- 3 17(p>. (9)

n=1

Further, from (9) we can estimate the overall response of a finite block of a composite
material of volume ¥ containing spherical inhomogeneitics. The simplest way of calculating
the overall stiflness is by ncglecting interactions between the inhomogeneitics and the
external surfuce of the matrix e, (B are calculated as if the inhomogencities are imbedded
inan infinite matrix. [n order to obtain an expression for the overall stiffness we introduce
ascet ol tensors Q" defined by (7> = Q"¢ “. These tensors can be extracted from the inverse
matrix of system (8). The expression for the overall stiffness <C) follows immediately from
(9)

(C) = (C"+ :/ 5 l"’Q”> . (10)

The solution to the problem for inhomogeneity w” subjected to the remote strain field
e“+Z,..D"(B" cannot be expressed in elementary functions. There are, nevertheless, a
number of ways to construct accurate approximate solutions. An analytical approach,
suggested by Moschovidis and Mura (1975), involves a complete Taylor’s expansion of
tensors D™ about the center of " with the consequent solution of the problem for remote
polynomial ficlds. This approach is justified by Properties 2 and 3 of the previous section.
Indeed, if we arrange a Taylor's expansion of e“ + X, ., D" (B> as a sum of collections of
constant, lincar, quadratic, etc. terms, then (i) this sum converges to the remote strain ficld
(Property 2), and (ii) each collection per se can be viewed as a remote ficld (Property 3).
Thus. for every collection, the necessary and sufficient conditions for the equivalency
between the inclusion and the inhomogencity problems should only be imposed inside o”.
Another approach to this problem is the finite element method. This option becomes
especially attractive because, at this instance, we have to analyze only one simple con-
figuration. Some details of the finite element implementation are discussed in the next
section where it is applied to the test problem. In the remainder of the paper we refer to a
combination of eqns (8) and the finite clement method as a hybrid approach.
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S. TEST PROBLEM

As a test for the proposed method we choose the problem for two equal voids. The
radius of the voids is equal to a, and the distance between their centers to d. The remote
stress is either equal triaxial tension. o, = §,,. or uniaxial tension. o,, = 9,39,;. The origin of
Cartesian coordinates coincides with the center of the lower (first) void. and the x;-axis
contains both centers (Fig. 1). The approximate solutions to this problem given by Chen
and Acrivos (1978a). Moschovidis and Mura (1975). and Willis and Acton (1976) do not
provide comprehensive reference data as they lack accuracy for closely-spaced voids. On
the other hand. the finite element analysis of this problem is inexpensive and capable of
providing satisfactory accuracy. The numerical solution is represented by the hoop stress
at point N(0. 0. a). where interactions are probably the strongest. and by the potential
energy release per void. These quantities, in terms of micromechanics. characterize con-
centrations of the microscopic stress and the overall response, respectively.

A typical axisymmetric finite element mesh (d = 2.1a) is shown in Fig. 2. [t consists of
a total of 700 four-node displacement-based elements with 500 elements confined to the
ligament. The outside radius is chosen to be equal to 10a. A simple parametric study
confirms acceptable accuracy of this model. The potential energy release is calculated from
a modified variational principle (Budiansky er a/.. 1981) which eliminates convergence
problems in evaluations of volume integrals. Computations are performed for the following
numerical values ¢ = 1, 2.001 < ¢ <3, =04, v =025 Results of the analysis are given
in Table 1 (columns 2 and 4) for the potential energy relcase, and in Tables 2 and 3 (column
2) for the hoop stress, for the cascs of equal triaxial tension and uniaxial tension, respectively.
The striking feature of these results is that the potential encrgy release is very insensitive
to the presence of interactions. In uniaxial tension its value changes only by 17% as
2.001 € d < . For cqual triaxial tension this variation is just 2%.

The implementation of our method to the problem for two voids is as follows.

Step 1. Determine the average equivalent transtormation strain from the system of cqns

(8):
e DB HSPDH (B> =0 in o',
e H(D'DHBYFSPD =D =0 in w
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Fig. 2(a). The axisymmetric finite clement model of an infinite region containing two spherical
voids. The ligament zone.
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Fig. 2(b). The axisymmetric finite element model of an infinite region containing two spherical
voids. The far-field zone.

Tensors <D = (D7) = (D) are caleulated from (2). (3) and (6). This system of equa-
tions is symmetric with respect to (B'Y and (B°) therefore we obtain
B =P =1-S=(D)) '&*.

Step 2. Caleulate the potential energy release associated with the voids (9) (Table 1, columns

Table 1. Potential energy release per inhomogencity for the
remote equal triaxial and uniaxial wension, o =1, p =04,

v=1025

Triaxial tension Uniaxial tension

d F.E. Analytical F.E. Analytical
2.001 —-7.20 -7.17 -3.51 —-3.36
2010 -~7.20 -7.17 —-3.52 -3.36
2.030 —-7.20 —~7.16 —-3.55 -3
2100 -7.17 -7.15 ~3.58 - 341
2.250 -7.13 -7.12 ~3.65 -3.50
2.500 —-7.09 -7.10 -3.75 -377
3.000 -7.07 —~7.08 —-391 ~3.82
1 -7.07 -7.07 -4.20 —-4.20

Table 2. Hoop stress at point & for the remote equal
triaxial tension, g = [, u = 0.4, v = 0.25

d F.E. Analytical Hybnid
2.001 17.8 272 3.74
2.010 7.36 2.68 3.67
2.050 3.99 2.56 337
2.100 3.10 2.42 3.08
2250 2.30 2.15 251
2.500 1.92 1.90 2.05
3.000 1.73 [.69 1.73

2l 1.50 1.50 1.50
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Table 3. Hoop stress at point .V for the remote uni-
axial tenston. ¢ = 1. u =04, v =025

d F.E. Analytical Hybrid
2.001 —1.98 -0.213 —0.666
2010 —0.812 -0.196 —0.601
2.050 —0.426 -0.135 —0.368
2,100 —1.320 -0.089 -0.175
2.250 -0.214 —0.061 0.042
2.500 -0.174 —-0.141 —-0.009
3.000 —0.319 —0.318 —0.256

x —0.589 —0.589 —0.389

3 and 5). Tensors Q7, for the overall stiffness estimates. are
Q' =Q ' =(1-S—-<Dy)"'C".

Step 3. Solve two individual problems : subject the first void to the remote field £ + D),
and the second void to e* +D'(B'>. As the two problems are essentially identical, we
consider only the first void. The results of the stress calculations using the analytical
approach, t.e. approximation of the remote field by the complete Taylor's polynomial of
degree two about x = 0, are given in Tables 2 and 3 (column 3). The finite element analysis
of this problem follows the basic idea of Eshelby. First, we calculate tractions on the surface
of the first void, as if the remote strain was applicd to a homogencous block of material.
Sccond, we apply the opposite tractions in the configuration containing the void so that a
superposition of this solution with the remote ficld £ +D*( %) constitutes the traction-
free void. Results of the finite element analysis are given in Tables 2 and 3 (column 4). The
computations arc performed using the axisymmetric mesh shown in Fig. 3. It consists of a
total of 2000 cight-node clements. A layer of unit thickness around the void contains 30
equadly-spaced clements in a radial direction. Although this discretization is not very cost-
efficient, it permits the use of this mesh for all the values of the separation distance . The
angular distribution of the nodes is governed by a geometric progression. Each arc consists
of 40 clements.

Table | demonstrates that our method provides highly accurate results for the potential
energy release associated with the voids. For equal triaxial tension, differences in the
predictions between the finite element analysis of this problem and our estimates are of the
order of the discretization errors of the finite element model. For uniaxial tension, the

Fig. 3(a). The axisymmetric finite clement model of an infinite region containing a spherical void.
The near ficld.
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Fig. 3(b). The axisymmetric finite element model of an infinite region containing a spherical void.
The far field.

maximum error (d = 2.001) is less than 5%. The results of the stress analysis are not as
accurate. For equal triaxial tension, the analytical approach is acceptable for d > 2.25.
When o = 2.25 the additional stress concentration is 2.15—1.50 = 0.65. The hybrid
approach is accurate for = 2.10. In this case the additional stress concentration is
3.10=1.50 = 1.60. The correlation is worse in the case of the remote uniaxial tension,
Partial explanation for this fact is the apparent non-monotonce variation of the hoop stress
as the voids approach cach other (Table 3, column 2). Although discrepancies in the data
may be substantial, it s nevertheless fair to suggest that the hybrid approach gives a
reasonable qualitative description of the hoop stress. We also want to mention that the case
of uniaxial tension would be the most challenging for the method employed by Chen and
Acrivos (1978a).

We conclude this section with an additional test for the analytical approach. The goal
of this test is to examine how accuracy of the solution depends upon the degree of the
Taylor's polynomials of tensor D. Tubles 4, 5 und 6 present stress states at point N based
on the zeroth-, first- and sccond-order Taylor’s polynomiuls. These tables correspond
respectively to three types of the remote boundary conditions —equal triaxial tension,
uniaxial tension, and shear a,, = 9,,0,1 4 9,:0,». For the axisymmetric cases we caleulate both
o, and gy, while for the remote shear only o.5. Proximity of stresses a4 and a4, to zero
is a good indicator of solutions” quality. The tabulated data clearly demonstrates that

Table 4. The stress state at point V for the remote equal triaxial tension
based on the zeroth-, tirst- and second-order Taylor's polynomials, a = I,
=04 v =025

T ay,

Zeroth First Scecond  Zeroth First Second

o order order order order order order
2.001 213 2.35 272 -~1.10 -0963 -0.543
2.010 211 232 2.68 - 1.06 —-0.932 -0.520
2.050 203 223 2.56 —-0930 —-0807 -—-0432
2.100 1.95 213 242 -0.796 —-0.682 ~0.347
2.250 1.80 1.94 2.15 —-0.526 —-0436 -0.193
2.500 1.68 1.77 1.90 —0.297 -0.235 -—-0.086
3.000 1.58 1.63 1.69 —-0.120 —-0.087 -0.024

L 1.50 1.50 [.50 0000 -0.000 -0.000
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Table 5. The stress state at point V for the remote uniaxial tension based
on the zeroth-. first- and second-order Taylor's polynomials,a = 1,4 = 0.4,
v=025

a O3

Zeroth First Second  Zeroth First Second

d order order order order order order
2.001 -1.12 -0.773 -0.213 -1.05 -0.722 0.058
2.010 -1.10 —-0.748 —0.196 —1.06 —0.731 0.038

2050 —-0987 -—065% -—0.135 -—1.06 -0.752  -0.032
2.100 -0.882 -0571 0089 —1.04 —-0.751  -0.086
2.250 —-0.698 —-0.443 -0.061 -—0.894 —-0.656 —0.139
2.500 -0.585 -0.399 -—0.141 -0.629 —0461 -0.113
3.000 —054 041 0318 -0303 -—-0212 -0.048

x —-0.589  —0.589 -0.589 0.000 0.000 0.000

the second order polynomials do not perform consistently better than the lower order
polynomials. Table 6, for example. is characterized by a pattern where, for d < 3, the
zeroth-order polynomial gives the best results and the first-order polynomial the worst. The
anticipated behavior is observed only in Table 4, and as a rule, although it is not shown in
the tables, for moderately and well-separated voids (¢ = 3). Although we appreciate the
fact that Property 2 does not guarantee fast convergence of the Taylor's expansion, the
overall poor performance of the analytical approach is a disappointment. The lengthy
algebraic expressions associated with the analytical approach have been implicitly verified
by finite clement calculations for a single void subjected to polynomial remote stress.

6. DISCUSSION

In this paper we have introduced a method of analysis of the lincar clasticity problem
for an infinite domain containing a linite number ol non-intersecting spherical inhomo-
geneities. This method is based on the two principal assumptions, stated in Section 4, which
permit the formulation of the problem in the context of the Eshelby formalism. Although
our presentation is restricted to spherical inhomogeneitics, an extension to ellipsoidal
inhomogeneities is possible. Indeed, Property 1, as it is derived in Section 3, holds for an
ellipsoidal inclusion. Therefore, with the same assumptions, the system of eqns (8) can be
used to determine the average equivalent transformation strains for ellipsoidal inhom-
ogeneities. In this case, however, tensors (D™ have to be evaluated numerically which
may require a considerable amount of computer time if the number of inhomo-
geneities is large.

Our method can be employed for estimates of the overall response of composite
materials with high volume fractions of inhomogeneities. In this respect, the analysis of the
test problem has offered two important observations::

Table 6. The stress state at point N for the remote
shear loading based on the zeroth-, first- and second-
order Taylor’s polynomials,a = 1, u = 0.4, v = 0.25

T2y

Zceroth First Sccond

d order order order

2.001 —1.06 —1.10 -1.07

2.010 —-0.995 - 1.04 —1.01
2.050 —0.761 —0.806 —0.785
2100 —0.543 —0.590 —-0.574
2.250 —0.183 -0.231 -0.224
2.500 0.004 -0.038 -0.037
3.000 0.042 0.015 0.013

bel 0.000 0.000 0.000
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o Our method is capable of very accurate and inexpensive calculations of the potential
energy release even when the voids are almost in contact (Table 1).

e The potential energy release. which governs the overall response of composite
materials, is almost unaflected by the presence of interactions.

These observations naturally led one to question whether the overall response of composite
materials with the second phase in the form of spherical inhomogeneities can be predicted
accuritely by the dilute solution. In order to examine this proposition we conduct the
following numerical experiment.

We take a set of 10 x 10 x 10 cubes composed from rigid spherical particles embedded
in an incompressible material with shear modus g Each particle’s radius is equal to either
0.6 or 1. The rationale for the different size particles is purely computational—a standard
random number gencrator fuils to simulate volume fractions above ¢ = 0.3 using equal-
sized particles. Although the overall shear response of the cube is characterized by three
constants {C .-, {C1;+. and {Cs:,:>. we do not distinguish between the orientations
and simply assign three values of the overall shear modulus ) per cube. The functional
form of the expression for (x> follows directly from eqn (10)

=" . (1

x¢
where 2 has to be determined numerically: ¥ = 2.5 in the absence of interactions. The
overall response is calculated for twenty-one cubes divided into seven sets. Each set is
characterized by a constant volume fraction of the rigid particles. Results of the com-
putations are summarized in Table 7. For each volume fraction we determine nine overall

Table 7. Summary of the numerical simulations with 21 cubes

Overall shear modulas, ()

Volume Number Number Cocllicient (8] (7]
fraction of small of large Mecan Dilute of varkance 171
¢ particles particles Computed values value solution Ya %
(1 (2l (3 [+ [3] (6] 7 (8] ] (o]
1.32 1.33 .36
0,100 0 24 1.32 .33 1.36 1.33 1.33 | 0

.32 1.33 1.33

1.92 1.97 205

0.201 0 48 2.08 210 203 202 2.00 2 -1
1.97 2.01 2.03
428 4.40 4.15

0.302 0 72 4.04 4.23 391 4.19 4.00 4 -4
441 416 4.10
8.71 10.6 7.83

0.349 108 ] 9.27 9.37 8.37 9.27 3.00 9 - 14

992 909 102

258 27.6 27.6

0.378 108 67 2 S 23.5 30.7 20.0 35 -33
555 26.8 240
417.0 ¥ S000.0
0.395 108 71 2940 . 171.0 b4 250 NA NIA
1. 365.0  693.0
s s T,
0.399 108 72 kK 5 £ s 1450 N A NA
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Fig. 4. The data for the parameter 2 of eqn (1 1) as obtained from the numerical simulations using
21 cubes.

shear moduli (three per cube), their mean value, and the cocflicient of variance. The latter
quantity is defined as the ratio of the standard deviation to the mean value. We use the o
symbol for the cases when T —ac < 0. An alternative presentation of the results is given as
data plot of values of the parameter a for the tabulated values of ¢ (Fig. 4). Apparently,
the data can be fitted reasonably well by the line o = 2.5. This result incidently coincides
with a scif-consistent estimate of Hill (1965).

From the conducted numerical experiment, we identify three distinet patterns of
behavior. For lower values of the volume fraction of inhomogencities (¢ < 0.35) the overall
shear modulus does not vary significantly for a fixed value of ¢. Basically, this fact implics
that the volume fraction is an adequate single-parameter representation of the effect of the
sccond phase on the overall response. We also suggest that the overall isotropy of the cubes,
in these cases, is better justified by weak interactions among the particles, rather than by
randomness of the generated configurations. For 0.35 < ¢ < 0.39 the difference in the
predictions is of the order of the statistical variance of the modulus within the considered
configurations of particle. The variance in the values of {u) can be explained by the
proximity of these ensembles of particles to the limit of ¢, = 0.4. This prediction disagrees
with the commonly used values of ¢, = 0.513 or ¢, = 0.740 which respectively cor-
respond to cubic and dense packing of uniform spheres. These two limits, however, do not
properly represent randomness of particles’ positions.t More detailed calculations, which
include interactions between the walls of the cube and the particles, may change numerical
answers and provide a better explanation.

Formula (11), with x = 2.5, agrees well with order ¢? estimate of Chen and Acrivos
(1978b)

) = p[l +2.5¢+5.01c3+ ().

Qur method can be also applied to the analysis of the local stress concentrations in
composile materials. The test problem for two voids suggests that the method provides
consistently better results if used in combination with the finite element analysis (hybrid
approach). Although the need to perform finite element calculations substantially increases
the amount of computations it is, nevertheless, reasonable to expect only a small portion
of inhomogeneities within a large ensemble will actually require the finite element analysis.

t1t is expedient to remark that it is possible to pack uniform spheres at the volume fraction of ¢,,, = 0.123
(Hilbert and Cohn-Vossen, 1952, p. 51).
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The stress state for the majority of inhomogeneities will be practically unperturbed by the
neighbors. The test problem demonstrates that our method performs very well qualitatively
but predictions of the local stress concentrations may contain inaccuracies. We do not
compare our method with those proposed by Moschovidis and Mura (1975) and Willis and
Acton (1976). Moschovidis and Mura do not present enough numerical results for such a
comparison. Results of Willis and Acton (1976). on the other hand. follow from eqn (8) if
the following additional assumptions are made. First. in the evaluation of (D™ we
neglect the second term in the right-hand side of eqn (6). Second. the average equivalent
transformation strains ($”) of eqn (8) are calculated as if there is only the mth inhomo-
geneity in the matrix.
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APPENDIX: INTEGRATION IN THE DOMAIN OF A SPHERE

The purpose of this appendix is to calculate the volume average of 4 smooth function prescribed in a sphere. Let
a sphere 1 occupy domain x| = . First, we evaluate an auxilary volume integral

Mo = [ AT XN dE (AD
l

v

for natural m. n. and p. Elementary caleulations using spherical coordinates (Gridshteyn and Ryzhik. 1980, p.
369) give



Linear elasticity for an infinite region 159

m+1 n+l p+1
pemeenrer T (%)

il w="‘+"+P+3 (m+n+p+3)
r 2

. (A2)

for even m, n, and p. The integral is equal to zero if any of the numbers is odd. The I'-function, in this case, can
be written in the form

/2 /x
r(k+i)=i/,—§[1x3x5x-~-x(zk—1)1=‘7'—'(:k-1)u. (A3)
Now we consider the volume average of an arbitrary smooth function f(x)

1
S0 =5 ﬁf(x) av. (A%)
The MacLauren series of f(x) ts

© x r © 1 aNf(o)

= —_— 7 x"xx.
JO=2 L X L gl avravian <vee (A3)
The summation convention in this formula implies that m+n4p = N. If we substitute (AS) into (A4) and usc

(A2) and (A3) we obtain

. R VE RPN ! TV @m=DNCn—1)12p= D
SO0 = X 53 L L L Gt ip i axi o ox aNT I - (A9

We obscerve that
(k) = QR x Qe -1 = 22Xk x k-1

and rewrite (A6) in the form

. w e b e Y AN g
SO0= T oniaan i, 5 5wt ST (A7)
Summation over m, i, p is a tri-nomial expansion of AY at 0 (A is the Laplace operator), and therefore
Uy = ¥ 2 aep), (AB)
o QN +3)QRN+ 1)
If f(x) is harmonic we recover the well-known result for the average value
S(x)> =£(0), (A9)

while for a bi-harmonic function

2
L)) = SO+ 35 (0). (A10)



