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Abstract -The problem of linear elasticity for an infinite region containing a finite number of non·
intersecting spherical and. more generally. ellipsoidal inhomogeneities is attacked. The approach
taken does not misrepresent geomctry of inhomogeneities. although the continuity conditions at
the interfaces arc ,'nly approximately satisfied. Thc princip.l1 idea of the approach is to extend the
mctl1\ld or I(,\chanov (19l\5. fill. 1. Fractllre 211, R II--R II): 19l\7. fll/. J. Solid. Struetllres 23, 23­
·H) for interacting cracks to the realm or the Eshelby equivalent inclusion method. The application
to a tcst problem for two spherical cavities Sll!?!?ests that the appn'ach can be lIscful for predictions
of the ,"'crall response of composite materials and interfacial stress concentrations.

1. INTRODUCTION

In this paper we address the linear elasticity probkm for an infinite region containing a
finite number of non-intersecting spherical inhomogeneities. While a general closed-form
solution to this probkm is not feasible it is important to develop both accurate and
ellicient methods ofapproximate analysis. It is apparent that straightforward applications of
numerical methods to this problem arc extremely limited-computations become pro­
hibitively expensive if the number of inhomogeneities exceeds two. Although a trivial
approximation (the dilute solution), which neglects intemctions among inhomogeneities, is
attractive in terms of computations it may not be always sufliciently accurate. In the
literature, there has been proposed a number of ways to interpret interactions among an
infinite number of inhomogeneities (Christinsen, 1979; Hashin, 1983; Willis. 1983). It is,
however. fair to state that the majority of those approaches homogenize the complex
geometry of the problem and therefore can only be employed for estimates of the overall
response. The other ddiciency of homogenization procedures is the difficulty in formulating
an adequate test probkm. This work presents a simple and relatively accurate method of
analysis which does not compromise the original geometry of the problem, although the
continuity conditions at the interf<lces arc only approximately satisfied.

The number of publications dedicated to the problem of linear elasticity for N spherical
inhomogeneities is r<lther small. The first analysis in this area is given by Sternberg and
Sadowsky (1952) for the <lxisymmetric problem for two voids. Chen and Acrivos (1978a)
provide a comprehensive treatment of the problem for two spherical inhomogeneities.
Their analysis conwins aCCUf4\te results for moderately sep<lf4\ted inhomogeneities and
also exposes computation,11 ditliculties as interactions become stronger. One of the most
important conclusions following from their work is that stress concentrations, induced by
a neighbor. become important only when the inhomogeneities are very close to each other.
For example, for two voids of radius II with the centers separated by d = 2.la (Fig. I).
stress concentrations under remote equal triaxial tension arc only two times larger than
those obtained for a single void. The data of Chen and Acrivos, as our finite element
calculations suggest. are reliable up to d = 2.25a. The authors themselves give a conservative
estimate d = 3a.
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Fig. I. An infinite region containing two spherical voids.

A more general approach to the problem for N inhomogeneities is suggested by
Moschovidis and Mura (1975). They construct an approximate solution within the context
of the formalism of Eshelby (1957, 1959, 1961). The key assumption, m'lde by Moschovidis
and Mura, is that the transformation strain within each domain is a polynomial in Cartesian
coordinates. In order to completely reduce the boundary-value problem to a system of
linear algebraic equations, the field around each inhomogeneity is represented by a Taylor's
polynomial. Unfortunately, Moschovidis and Mura do not address the issue ofconvergence
of their procedure and the selection of numerical examples is not representative of the
problem.

A very simple estimate of weakly-interacting inhomogeneities is given by Willis and
Acton (1976). This estimate is developed in conjunction with the so-called order c2 cal­
culations of the overall response pioneered by Batchelor and Green (1972) (c is the volume
fraction of inhomogeneities). The approximation of Willis and Acton is correct to order
(a/d») and it predicts accurate results for well-separated inhomogeneities (d ~ 2.5a).

In our approach we decompose the original problem for N inhomogeneities into N
disconnected problems for a single inhomogeneity with the consequent solution of each
problem. This decomposition is motivated by an assumption made by Kachanov (1985,
1987) in a study of interacting cracks. We extend that assumption to spherical and, more
generally, ellipsoidal inhomogeneities. Typically, formulation of the N problems requires
inversion of a 6N x 6N matrix. Each of these problems is stated for a single inhomogeneity
which perturbs a complicated remote field. Solution to this class of problems can be obtained
either by expanding this remote field into a Taylor's series (Moschovidis and Mura, 1975)
or by using a finite element method.

In the next section we briefly review the Eshelby solution to the problems of a single
inclusion and an inhomogeneity. The purpose of this review is to provide the background
for the main problem both in terms of the concepts and notation. The third section discusses
some mathematical aspects of the Eshelby solution which are directly related to the problem
for N inhomogeneities. The analysis of the main problem is presented and tested in Sections
4 and 5, respectively. As a test we choose the problem for two equal voids subjected to
axisymmetric remote stress. The discussion focuses on the extension of the method to the
general case of ellipsoidal inhomogeneities, and its applications to the mechanics of com­
posite materials.

We take the liberty of using both direct and index notation for tensors. Boldface lower­
case Greek letters designate tensors of rank two, capital Latin letters tensors of rank four.
Subscripts denote Cartesian components. Superscript II attributes the corresponding entry
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to the nth inhomogeneity. The finite element cornputations reported herein are performed
with the program ABAQUS installed on a eRAY XMP computer.

2. SUMMARY OF THE ESHELBY SOLUTION

Let us consider an infinite region of a homogeneous linear elastic isotropic material
with shear modulus /l and Poisson's ratio v. There is an inclusion inside this region, a sphere
w(lxl < a) which experiences uniform transformation strain fJ. The open exterior of the
inclusion, Q, is termed matrix. The strain field, induced by the inclusion. can be formally
written as

{
SfJ

e(x) = DfJ
if xew

if xeQ.
(I)

Tensor S is a constant (Eshelby. 1957) with components

7-5v
SIIII = SU22 = SJJ3J = 15(I-v)

The remaining components of S arc equal to zero. Tensor 0 is expressed in terms of
potentials (p and t/J (Eshdby, 1959)

with

4rra J 4rra s I
t/J =-Ixl+ -- --.

3 15 Ixl
(3)

Formula (2), although with different expressions for the potentials. can be used for tensor
S as well. Equation (5) of the next section is a general form of (1)-(3) valid for both Sand
D.

The inclusion problem can be employed as the basis in constructing the solution for
an infinite body containing a spherical inhomogeneity. In this case the subdomain w is
occupied by a different linear elastic material. The stiffness tensors of the matrix and
inhomogeneity materials are C and C·, respectively. The matrix is subjected to a remote
uniform strain & 'L. The perturbation, &. ofthe remote field can be simulated using an inclusion
with the appropriately chosen equivalent transformation strain, fJ. It is straightforward to
verify that the necessary and sufficient condition for the equivalence between the fields
induced by the inhomogeneity and the inclusion is

(4)

This condition and the relation £ = SfJ in w form a closed system of algebraic equations
for the equivalent transformation strain. An explicit expression for fJ can be found in Mura
(1982, p. 156). After fJ has been determined the strain perturbation in the matrix is calculated
from eqns (1)-(3).
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Eshe1by (1961) further derives a more general result. He demonstrates that if P is a
polynomial of degree n in Cartesian coordinates. then the strain inside the inclusion is a
sum of monomials of degree n. n - 2. n - 4. etc. Although in this case the mathematical
expressions are somewhat lengthy. the structure of the approach is essentially the same as for
a uniform transformation strain. This generalization for the inclusion problem immediately
suggests that the inhomogeneity problem can also be extended to the general case of a
polynomial remote strain. A very clear presentation of these topics is given by M ura (1982).

} PROPERTIES OF THE ESHELBY SOLUTION

In this section we will derive certain important properties of tensors Sand D in order
to provide a consistent basis for the analysis of the problem for N inhomogeneities.

Property I. If 6 is the strain inside the inclusion w. induced hy (/ transformatio1/ strain fl.
then

(6) = S <P).

where the hrackcts dCl/ote the l'olw1/c (/l'erage in (I).

In order to prove this reia tion we use ani ntegral represen tation of ( I) (M ura. 1982.
p. 33):

where G'J(x. x') is the fundamental solution for an infinite domain. Direct integration of (5)
gives

In this calculation V"' denotes the volume of CtJ. We have used the symmetry of tensor
G;I.k/(X'. x) in arguments x and x' . and a representation for S""," which follows directly from
(5).

Property 2. Te1/sor D is analytic £'l'erywherc in n.
It is apparent. from expressions (2). (3). that analyticity of [xl and Ixl I implies

analyticity of 0 . The proof for Ixl as well as for Ixl I becomes elementary if we write
Ixl == Jx-:~x. and observe that x· x is analytic everywhere. and the square root function is
analytic everywhere except for the origin. As n docs not contain the origin. the proof is
complete.

The next property requires a definition. A Taylor's polynomial of degree n of a smooth
function of x is complete if it omits none of the monomials of degree II.

Property 3. If u(x) is all analytic solllti01/ of tllc IIOfl/OgC1/COlIS Nal'ier equations of elasticity
iI/ n. thc1/ its cOfl/plete Taylvr's polY1/omial is also a hOfl/ogelleous solution of tile Narier
equatiolls i1/ n.
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This property can be verified by a substitution. It is interesting to observe that this
conclusion can be drawn for any linear differential operator with constant coefficients for
which the characteristic equation is in the form of homogeneous polynomial. Here. we
restrict this property to the Eshelby solution. Let D be a complete Taylor's polynomial of
D. Then for a constant strain tensor t. the strain field Di' in the matrix is compatible and
the corresponding stress satisfies the equilibrium equations.

Finally. we calculate the volume average of tensor D inside a spherical subdomain of
the matrix. This calculation can be done directly by integration of expressions (2). (3)
(Willis and Acton. 1976). We obtain the same result as a consequence of a more general
formula. which is an extension of the Gauss related theorem for harmonic functions. A
detailed derivation of this formula is given in the Appendix. For a spherical subdomain of
the matrix with radius r and the center at c(lcl > r+a) we derive

(6)

This integration takes advantage of the fact that potentials cP(x) and l/J(x) are harmonic
and bi-harmonic functions. respectively.

4. TilE PR08LEM FOR N INHOMOGENEITIES

Let us now demonstrate how the formalism of Eshelby can he extended. in an approxi­
mate manner. to the problem for N non-interSt."Cting spherical inhomogeneities. The inhomo­
geneities are characterized by stiffnesses en and occupy subdomains w" of an infinite clastic
body. Remote fields in the matrix. I: £, and (1 L «(1' = el: £,). are uniform. In principle. this
problem can be written in terms of6N coupled singular integral equations which are derived
as a combination of the equivalency condition (4) and representation (5). For N> I a
closed-form solution to this system of equations does not exist.

A natural approach to the problem for N inhomogeneities is to approximate the
equivalent transformation strains by polynomials in Cartesian components (Moschovidis
and Mura. 1975). It turns out. however. that this approach may require polynomials of
high degree in order to achieve reasonable accuracy (see next section). An attractive
treatment of the problem can be based on ideas proposed by Kachanov (1985. 1987) for
interacting cracks. Here. we reformulate the principal assumptions of Kachanov in the
context of the Eshc1by formalism:

• The original problem for N inhomogeneities can be represented by N problems for a
single inhomogeneity subject to a remote strain (stress) field induced by the remaining
inhomogeneities and the uniform remote strain (stress) .

• The contributions of the remaining inhomogeneities to the remote field of a reference
inhomogeneity are based only on their average equivalent transformation strains.

The idea of representing the problem for N inhomogeneities as N problems for a single
inhomogeneity has been employed in analyses of cracks by several authors (see Kachanov,
1987. for references). We. nevertheless. want to emphasize that its adoption is an assumption
which permits us to substitute a complete field by N local fields. This assumption is not
ambiguous if we restrict our calculations of the stress field in the matrix to the interfaces
only. Furthermore. in view of the second assumption. the most accurate values of interfacial
stress concentrations for a given inhomogeneity are obtained from the corresponding local
field.

The second assumption implemented in the equivalency condition for the "th inhomo­
geneity gives
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The second term within each set of parentheses corresponds to the remote strain field
induced by the remaining inhomogeneities. Let us take the volume average of (7) in w":

C(s'+ 2: (O"'")(P"')+S(P"»)=C(s'+ L (O"'")(P"')+S(P")-(P"») In W". (8)
", ~"

The average strain inside (I)". induced by its own equivalent transformation strain. follows
from Property I of the previous section. Tensor (0"'") corresponds to tensor 0 of the mth
inclusion averaged in w". Evidently. for two inhomogeneities with eqlwl radii
(0""') = (0""'). Equation (8). written for every domain. forms a system of 6N linear
algebraic equations for the average equivalent transformation strains (P"). The matrix of
this system is full and. in general. not symmetric. It is. nevertheless. characterized by a
dominant main diagonal. After the average equivalent transformation strains have been
determined. we can formulate the problems for individual inhomogeneities.

The potential energy release. associated with the presence of inhomogeneities, can be
calculated directly in terms of (P") (Mura. 1982. p. 177):

s
.1n = _~ar. L 1'"(/1").

n.,..,1

(9)

Further, from (9) we can estimate the overall response of a .fillite block of a composite
ma terial of volume V containing spherical inhomogeneities. The simplest way ofcalculating
the owrall stiffness is by neglecting interactions hetween the inhomogeneities and the
external surface of the matrix i.e. (/J") arc calculated as if the inhomogeneities arc imbedded
in an infinite matrix. In order to obtain an expression for the overall stiffness we introduce
a set of tensors Q" defined by (W') = Q"a'. These tensors can he extracted from the inverse
matrix of system (X). The expression for the overall stiffness (C) follows immediately from
(9)

(
I'

v
)(C) = C 1+ - L V"Q" .

V ,,-~ I
( 10)

The solution to the problem for inhomogeneity w" subjected to the remote strain field
s L. + I", ~"O"'( /J"') cannot be expressed in elementary functions. There are. nevertheless. a
number of ways to construct accurate approximate solutions. An analytical approach.
suggested by Moschovidis and M ura (1975). involves a complete Taylor's expansion of
tensors om about the center of w" with the consequent solution of the problem for remote
polynomial fields. This approach is justified by Properties 2 and 3 of the previous section.
Indeed. if we arrange a Taylor's expansion of £ f. + I", -;,,0'" (P"') as a sum of collections of
constant. linear, quadratic, etc. terms, then (i) this sum converges to the remote strain field
(Property 2). and (ii) each collection pt!r st! can be viewed as a remote field (Property 3).
Thus. for every collection. the necessary and sufficient conditions for the equivalency
between the inclusion and the inhomogeneity prohlems should only be imposed inside w".
Another approach to this problem is the finite element method. This option becomes
especially attractive because, at this instance. we have to analyze only one simple con­
figuration. Some details of the finite element implementation arc discussed in the next
section where it is applied to the test problem. In the remainder of the paper we refer to a
combination of eqns (8) and the finite element method as a hybrid approach.
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5. TEST PROBLEM

As a test for the proposed method we choose the problem for two equal voids. The
radius of the voids is equal to a, and the distance between their centers to d. The remote
stress is either equal triaxial tension. a'j = b,/, or uniaxial tension. a" = c5 t3 c5j3 • The origin of
Cartesian coordinates coincides with the center of the lower (first) void. and the xJ-axis
contains both centers (Fig. I). The approximate solutions to this problem given by Chen
and Acrivos (1978a). Moschovidis and M ura (1975). and Willis and Acton (1976) do not
provide comprehensive reference data as they lack accuracy for closely-spaced voids. On
the other hand. the finite element analysis of this problem is inexpensive and capable of
providing satisfactory accuracy. The numerical solution is represented by the hoop stress
at point N(O. O. a). where interactions are probably the strongest. and by the potential
energy release per void. These quantities. in terms of micromechanics. characterize con­
centrations of the microscopic stress and the overall response. respectively.

A typical axisymmetric finite element mesh (d = 2.1£1) is shown in Fig. 2. It consists of
a total of 700 four-node displacement-based elements with 500 elements confined to the
ligament. The outside radius is chosen to be equal to lOa. A simple parametric study
confirms acceptable accuracy of this model. The potential energy release is calculated from
a modified variational principle (Budiansky et £11.. 1981) which eliminates convergence
problems in evaluations of volume integrals. Computations are performed for the following
numerical values a = I. 2.00 I ~ d ~ 3. JI = 0.4. \' = 0.25. Results of the analysis arc given
in Table I (columns 2 and 4) for the potential energy release. and in Tables 2 and 3 (column
2) for the hoop stress. for the cases ofell ual triaxial tension and uniaxial tension. respectively.
The striking feature of these results is that the potential energy release is very insensitive
to the presence of interactions. In uniaxial tension its valuc changes only by 17% as
2.001 ~ d <'X). For ellual triaxial tension this variation isjust 2'10 •

The implementation of our method to the problem for two voids is as follows.

St<'1' I. Determine the average equivalent transformation strain from thc system of eqns
(X) :

r.' +(D!')(p!)+S(/I')-(/I') = 0 In (I) 1.

r.' +(O'!)(P')+S(/I!)-(/f) = 0 in (I)!.

Fig. 2(a). The a~isymmetric finite element model of an infinite region containing two spherical
voids. The ligament zone.
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Fig. 2(b). The a~isymmetric finite elcmenl model of an inlinite region containing two spherical
vl,ids. The far-field zone.

Tensors (r>:I) == ([)I) == (D) are calculated from (2), (3) and (6). This system ofelJua­
tions is symmetric with respect to (p I) and (/I!) therefore we obtain

(/1 1
) == (fl!) == (I-S-(r>)) Ie'.

Sf('p 2. Calculate the potential energy release associated with the voids (9) (Table I. columns

Table I. Pol<:nlial energy rdease per inhomogeneity for the
renwle e<llIal lriaxial and lInia~ial tension. <I "" I. I' ~ 0.4.

\' '" 0.25

Triaxial tensillll Uniaxial lension

d F.E. Analytical F.E. Analyticcl!

2.001 -7.20 -7.17 -3.51 - 3.36
2.010 -7.20 -7.17 -3.52 -3.36
2.050 -7.20 -7.16 -3.55 -3.3K
2.100 -7.17 -7.15 -3.5K -3.-11
2.250 -7.13 - 7.12 -3.65 -3.50
~.500 -7.(J') -7.10 -3.75 -3.77
3.000 -7.07 -7.0X - 3.'J I -]x2

~~ -7.07 -7.07 --120 --I.2()

Table 2. Hoop stress at point N for the remote e4u,l!
triaxial tension. a = I. II = 0.4. v = 0.25

d

2.001
2.010
2.050
2.100
2.250
2.500
3.0()()

F.E.

17.11
7.36
3.99
3.10
2.30
1.92
1.73
\.SO

Analytical

2.7:!
2.6X
2.56
2.42
2.15
1.90
1.69
1.50

Hybrid

3.7-1
3.67
3.37
3.08
2.51
2.05
1.73
1.50



Linear elasticity for an infinite region

Table 3. Hoop stress at point .V for the remote uni­
axial tension. lJ = I.!J = 0.4, v = 0.25

d FE. Analytical Hybrid

2.001 -1.9X -0.213 -0666
2.010 -OXI2 -0.196 -U.601
2.050 -0.~26 -0135 -0.368
2.100 -0.32U -0.089 -0.175
2.250 -0.214 -0.061 0042
2.500 -0.174 -0.1~1 -0.U09
3.000 -0.319 -U.318 -0.256

x -O.58\} -0.589 -0.589

3 and 5). Tensors Q", for the overall stilfness estimates, are

153

QI = Q~ = (I-S-(O»-IC-I.

S(CI' 3. Solve two individual problems: subject the first void to the remote field r." + O~( Ir),
and the second void to r." +0 1(1'1). As the two problems are essentially identical, we
consider only the first void. The results of the stress calculations using the analytical
approach, i.e. approximation of the remote lield by the complete Taylor's polynomial of
degree two ahout x = 0, are given in Tahks 2 and 3 (column 3). The finite element analysis
of this problem follows the hasic idea of Eshelby. First. we calculate tractions on the surface
of the lirst void, as if the remote strain was applied to a homogeneous block of material.
Second, we apply the opposite tractions in the configuration containing the void so that a
superposition of this solution with the remote liekl r.' + D~( p~) constitutes the traction­
free void. Results of the finite element analysis arc given in Tables 2 and 3 (column 4). The
computations are performed using the axisymmetric mesh shown in Fig. 3. It consists of a
total of 2000 eight-node elements. A layer of unit thickness around the void contains 30
equally-spaced elements in a radial direction. Although this discretization is not very cost­
ellicient, it permits the usc of this mesh for all the values of the separation distance d. The
angular distribution of the nodes is governed by a geometric progression. Each arc consists
of 40 elements.

Table I demonstrates that our method provides highly accurate results for the potential
energy release associated with the voids. For equal triaxial tension, difli:rcnces in the
predictions between the tinite clement analysis of this problem and our estimates are of the
order of the discretization errors of the finite element model. For uniaxial tension, the

Fig. 3(a). The axisymmetrk finite element model of an infinite region containing a spherical void.
The ncar field.
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Fig. 3(h). The axisymmetric finite element model of an infinite region containing a spherical void.
The far field.

maximum error (d = 2.00 I) is kss than 5%. The results of the stress analysis are not as
accurate. For equal triaxial tension, the analytical approach is acceptable for d ~ 2.25.
When d = 2.25 the additional stress concentration is 2.15 - 1.50 = 0.65. The hybrid
approach is accurate for d ~ 2.10. In this case the additional stress concentration is
:U 0 - 1.50 = 1.60. The correlation is worse in the case of the remote uniaxial tension.
Partial explanation for this fact is the apparent non-monotone variation of the hoop stress
as the voids approach each other (Tahk J, column 2). Although discrepancies in the data
may he suhstantial, it is ncvertheless fair to suggest that the hyhrid approach gives a
reasonahlc qualitative description of the hoop stress. We also want to mention that the case
of uniaxial tension would he the most challenging for the method employed by Chen and
Acrivos (197ga).

We conclude this sedion with an adJitionaltest for the analytical approach. The goal
of this test is to examine how accuracy of the solution depends upon the degree of the
Taylor's polynomials of tensor D. Tables 4, 5 and 6 present stress states at point N based
on the zeroth-, !irst- and second-order Taylor's polynomials. These tabks correspond
respectively to three types of the remote boundary conditions -equal triaxial tension,
uniaxial tension, and shear (T" = (),A 1+ (j,l(),> For the axisymmetric cases we calculate both
(j I I and 0'11, while for the remote shear only r1 ~ J. Proximity of stresses (T ~1 and (j 11 to zero
is a good indicator of solutions' quality. The tabulated data clearly demonstrates that

Tahk -I. The stress state at point .V for the remote elJual triaxial tensioll
hased Oll the zeroth-. first- and second-order Taylor's polynomials. II = I.

I' = OA. ,. = 0.25

"11 ""
Zeroth First S~'Cond Zeroth First Second

" onkr order order order order order

2.001 2.13 2.35 2.72 -1.10 -O.'J03 -0.543
2.010 2.11 2.32 2.6S -1.06 -0.932 -0.520
2.050 2.03 223 2.56 -0.930 -0.1;07 -OA32
2.100 1.95 2.13 2A2 -0.796 -O.6S2 -0.347
2.250 I.SO 1.94 2.15 -0.526 -OA36 -0.193
2.500 1.6S 1.77 1.90 -0.297 -ODS -0.086
3.000 1.58 1.63 1.(,9 -0.120 -0.OS7 -0.024

Y.. 1.50 1.50 1.50 -O()()() -0.000 -0.000
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Table 5. The stress state at point N for the remote uniaxial tension based
on the zeroth-. first- and second-order Taylor's polynomials. a = I. Jl = O.~.

v = 0.25

0"11 O"Jl

Zeroth First Second Zeroth First Second
d order order order order order order

2.001 -1.12 -0.773 -0.213 -1.05 -0.722 0.058
2.010 -1.10 -0.748 -0.196 -1.06 -0.731 0.038
2.050 -0.987 -0.656 -0.135 -1.06 -0.752 -0.032
2.100 -0.882 -0.571 -0089 -1.04 -0.75\ -0.086
2.250 -0.698 -0.443 -0.061 -0.894 -0.656 -0.\39
2.500 -0.585 -0.399 -0.141 -0.629 -0.461 -0.113
3000 -0.544 -0.441 -0.3\8 -0.303 -02\2 -0.048

x -0589 -0.589 -0.589 0.000 0.000 0.000

the second order polynomials do not perform consistently better than the lower order
polynomials. Table 6. for example. is characterized by a pattern where. for d < 3. the
zeroth-order polynomial gives the best results and the first-order polynomial the worst. The
anticipated behavior is observed only in Table 4. and as a rule. although it is not shown in
the tables, for moderately and well-separated voids (d ~ 3). Although we appreciate the
fact that Propcrty 2 does not guarantee fast convergence of the Taylor's expansion, the
overall poor performance of the analytical approach is a disappointment. The lengthy
algebraic expressions associated with the analytical approach have been implicitly verified
by finite element calculations for a single void subjected to polynomial remote stress.

6. [)(SCUSSION

In this paper we have introduced a method of analysis of the linear elasticity problem
for an infinite domain containing a finite number of non-intersecting spherical inhomo­
geneities. This method is based on the two principal assumptions. stated in Section 4, which
permit the formulation of the problem in the context of the Eshelby formalism. Although
our presentation is restricted to spherical inhomogeneities. an extension to ellipsoidal
inhomogeneities is possible. Indeed. Property I, as it is derived in Section 3, holds for an
ellipsoidal inclusion. Therefore. with the same assumptions, the system of eqns (8) can be
used to determine the average equivalent transformation strains for ellipsoidal inhom­
ogeneities. In this case, however, tensors <D"'") have to be evaluated numerically which
may require a considerable amount of computer time if the number of inhomo­
geneities is large.

Our method can be employed for estimates of the overall response of composite
materials with high volume fractions of inhomogeneities. In this respect, the analysis of the
test problem has olrered two important observations:

Table 6. The stress state at point N for the remote
shear loading based on the zeroth-. first· and second­
order Taylor's polynomials. (l = I. Jl = 0.4. v = 0.25

11:3

Zeroth First Second

" order order order

2.001 -1.06 -1.10 -1.07
2.010 -0.9<)5 -1.04 -1.01
2.050 -0.761 -0.K06 -0.785
2.(00 -0.543 -0.590 -0.574
2.250 -0.183 -0.231 -O.22~

2.500 0.004 -0.038 -0.037
lOOO 0.042 0.015 0.013

XJ 0.000 0.000 O.()()()
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(II )

.Our method is capable: ohery accurate and inexpensive calculations of the potential
energy rele:ase even when the voids are almost in contact (Table I I.

• The potential enc:rgy release. which governs the overall response of composite
materials. is almost unatrected by the presence of intc:ractions.

These observations naturally kd one to question whether the overall response of composite
materials with the second phase in the form of sphc:rical inhomogeneities can be predicted
accurately by the dilute solution. In order to examine this proposition we conduct the
following numerical experiment.

We take a set of lOx lOx 10 cubes composed from rigid spherical particks embedded
in an incompressible material with shear modus JI. Each particle's radius is equal to either
0.6 or I. The rationale for the ditferent size particles is purely computational--a standard
random number generator fails to simulate volume fractions above c = 0.3 using equal­
sized particles. Although the ovc:rall shear response of the cube is characterized by three
constants (Cr ~ 1~). (Cr '11). and <C~l~ 1). we do not distinguish between the orientations
and simply assign three values of the overall shear modulus <II) per cube. The functional
form of the expression for (/I) follows directly from eqn (10)

<II) = I JI
-lC

where 1 has to be determined numerically: 1 = 2.5 in the absence of interactions. The
overall response is calculated for twenty-one cubes divided into seven sets. Each set is
characterized by a constant volume fraction of the rigid particles. Results of the com­
putations arc summarized in Tahle: 7. For each volullle fraction we determine nine overall

Tank 7. SUIlllllary of tlI<: IlUIll<:rl\;al sllllulaliolls willI 21 <:un<:s

(>v<:rall slI<:ar Illodulus. <I' > II

V"lulll<: Numn,," Numn<:r ('o<:lli<:i<:OI [xJ [7J
ffa<:lion of srnall of lan.:<: M<:an Dilut<: of V;trialll'<: [71

c rartid<:s rarti<:l<:s ('ornput<:d valu<:s valll<: solulion l~/O (~/u

[II [2J 111 [~I [5/ (6) [71 [X/ [9/ [101

132 1.33 1.31.

B.lOO 0 2~ 1.32 I ..'.' 1..'6 U3 U3 0

1.32 1.3.1 1.33

\.92 \.In 2.05

0.201 0 ~S 2.0X 2.10 2.03 :2.02 :2.0(J :2 -I

1.97 201 203

~.2X ~.~o ~.15

0.302 0 72 ~.O~ 423 391 4.19 4.nO -4

441 4./6 4.10

X.71 10(. 7.s3

0.349 lOX 1>0 9.27 9..'1 X.37 9.27 X.OO 9 -14

')'12 '1.0'1 10.2

~5.S 27.6 27(,

0.37X lOX (,7 21 1 4-U 235 3D.7 20.0 J5 -35

555 2(,.S 24.0

417.D f 5000.0

0.395 lOX 71 2940 :( 171.0 z 25D :siA :siA

'. J65IJ 69J.0

f I f.

0.399 lOX 72 ., f . f. Y. 1450 :sit\ :si/\

z f T.
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Fig. 4. The data for the parameter :x of eqn (II) as obtained from the numerical simulations using
21 cuocs.

shear moduli (three per cube), their mean value. and the coefficient of variance. The latter
quantity is dclined as the ratio of the standard deviation to the mean value. We use the 00

symbol for the cases when I - iXC ~ O. An alternative presentation of the results is given as
data plot of values of the parameter ix for the tabulated values of C (Fig. 4). Apparently,
the data can be fitted reasonably well by the line ix = 2.5. This result incidently coincides
with a self-consistent estimate of Hill (1965).

From the conducted numerical experiment. we identify three distinct pallerns of
behavior. For lower values of the volume fraction of inhomogeneities (c ~ 0.35) the overall
shear modulus does not vary significantly for a fixed value of c. Basically. this fact implies
that the volume fraction is an adequate single-parameter representation of the effect of the
second phase on the overall response. We also suggest that the overall isotropy of the cubes,
in these cases. is beller justified by weak interactions among the particles, rather than by
randomness of the generated configurations. For 0.35 < c < 0.39 the difference in the
predictions is of the order of the statistical variance of the modulus within the considered
configurations of particle. The variance in the values of (J.l) can be explained by the
proximity of these ensembles of particles to the limit of cma ' = 0.4. This prediction disagrees
with the commonly used values of "max = 0.513 or Cmax = 0.740 which respectively cor­
respond to cubic and dense packing of uniform spheres. These two limits, however, do not
properly represent randomness of particles' positions.t More detailed calculations, which
include interactions between the walls of the cube and the particles, may change numerical
answers and provide a better explanation.

Formula (II), with ix = 2.5, agrees well with order c 2 estimate of Chen and Acrivos
( 197Hb)

Our method can be also applied to the analysis of the local stress concentrations in
composite materials. The test problem for two voids suggests that the method provides
consistently better results if used in combination with the finite element analysis (hybrid
approach). Although the need to perform finite element calculations substantially increases
the amount of computations it is, nevertheless, reasonable to expect only a small portion
of inhomogeneities within a large ensemble will actually require the finite element analysis.

t It is c1tpedicnt to rcmark that it is possible to pack uniform spheres at the volume fraction of c.... = 0.123
(Hilhert and Cohn-Vosscn. 1952. p. 5\).
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The stress state for the majority of inhomogeneities will be practically unperturbed by the
neighbors. The test problem demonstrates that our method performs very well qualitatively
but predictions of the local stress concentrations may contain inaccuracies. We do not
compare our method with those proposed by Moschovidis and Mura (1975) and Willis and
Acton (1976). Moschovidis and Mura do not present enough numerical results for such a
comparison. Results of Willis and Acton (1976), on the other hand, follow from eqn (8) if
the following additional assumptions are made. First. in the evaluation of <D"'"> we
neglect the second term in the right-hand side of eqn (6). Second, the average equivalent
transformation strains <pm> of eqn (8) are calculated as if there is only the mth inhomo­
geneity in the matrix.
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APPENDIX: INT[(iRATlON IN TIlE DOMAI~ OF A SPIfERE

The purpose of this aprendi., is tn calculate the volum<: av<:rage or a smooth function prcscrihcu in a sphere. Let
a spher<: j'oc<:upy dom;lin Ixl ~; U. First. ..... <: evaluate an auxilary volume integral

''I - r .'''" .Cdl·
. fj 101"" - JI .\ I .\ ~.\ I •

(AI)

for n;lturalm. 1/. and p. Ei<:lllenlary l'akulallClns using spherical coordinat<:s (Gradsht<:yn and Ryzhik. 19XO. p.
36'1) giv<:
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(A2)

for even m. n. and p. The integral is equal to zero if any of the numbers is odd. The r·function. in this case, can
be written in the form

~ ;;
r(k+l.> = ~k [1 x3xSx'" x(2k-l») = ~k (2k-1)!!.

Now we consider the volume average of an arbitrary smooth function f(")

<f(x» =} fJ(X) dV.

The MacLauren series of fIx) is

(A3)

(A4)

(AS)

The summation convention in this formula implies that nr +n +p = N. If we substitute (AS) into (A4) and use
(A2) and (A3) we obtain

. '3<1"'" I (JlNf(O) (2nr-l)I!(2n-1)!!(2p-I)!!
<.f(x» = L ~--V-3 L L L ("' )1(", 'e)" lm, lOr:' eN I)" (A6).'_11 _I + m_lIo.O ._11 _rtf. _n) .•p .(.X, eX l XI - + ..

We ohserve that

(2k)! = (2k)!! x (2k-I)!! = 2k k! x (2k-I)'!

'II1U rewrite (A6) in the form

(A7)

Summation over nr, II, p is a lri-nomial expansion of tJ. .• at 0 (tJ. is the Laplace operator), and therefore

IfJ(x) is harmonic we recover the well-known result for the average value

<1("» = [(0).

while for a bi-harmonic function

(All)

(A9)

(AIO)


